Part Number Hot Search : 
74HCT 1SS181 CMP03 DS100 HFD41 WR600 128MC 03A50
Product Description
Full Text Search
 

To Download TMF3202Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Preliminary Specification N-Channel Dual-Gate MOSFET
Description
The TMF3202Z is an enhancement type N-channel field-effect transistor. The source and substrate are interconnected. Internal bias circuits enable DC stabilization and a very good crossmodulation performance during AGC. Integrated diodes between the gates and source protect against excessive input voltage surges. The transistor has a SOT343 micro-miniature plastic package.
TMF3202Z
SOT343
Unit in mm
2
3
1
4
Features
- Gain controlled amplifier with AGC - Integrated gate protection diodes - High AGC-range, high gain, low noise figure
Applications
- Gain controlled input stage for UHF and VHF tuners - Professional communications equipment
1. SOURCE 2. DRAIN
3. GATE 2 4. GATE 1
Absolute Maximum Ratings (Ta = 25 )
Parameter Drain-Source Voltage Drain Current Gate 1 Current Total Power Dissipation Storage Temperature Operating Junction Temperature Symbol VDS ID IG1 Ptot Tstg Tj Ratings 10 30 10 200 -65 ~ 150 150 Unit V mA mA mW
Caution : Electro Static Discharge sensitive device, observe handling precaution
http://www.tachyonics.co.kr October. 2005.
Page 1 of 8
Rev. 1.0
Preliminary Specification
DC Characteristics
( Tj = 25 , unless otherwise specified )
PARAMETER Drain-source breakdown voltage Gate1-source breakdown voltage Gate2-source breakdown voltage Forward source-gate1 voltage Forward source-gate2 voltage Gate1-source threshold voltage Gate2-source threshold voltage Drain-source current Gate1 cut-off current Gate2 cut-off current SYMBOL V(BR)DSS V(BR)G1-SS V(BR)G2-SS V(F)S-G1 V(F)S-G2 VG1-S(th) VG2-S(th) IDSX IG1-S IG2-S CONDITION VG1-S=VG2-S=0; ID=10 VG2-S=VDS=0; IG1-S=10 VG1-S=VDS=0; IG2-S=10 VG2-S=VDS=0; IS-G1=10 VG1-S=VDS=0; IS-G2=10 VDS=5V; VG2-S=4V; ID=100 VDS=5V; VG1-S=4V; ID=100 VG2-S=4V; VDS=5V; RG=62 VG1-S=5V; VG2-S=VDS=0 VG2-S=5V; VG1-S=VDS=0 MIN. 10 6 6 0.5 0.5 0.3 0.3 8 -
TMF3202Z
MAX. 10 10 1.5 1.5 1.0 1.2 16 10 10
UNIT V V V V V V V
AC Characteristics
( Common source; Ta = 25 , VG2-S = 4V, VDS =5V, ID =12mA ;unless otherwise specified )
PARAMETER Forward transfer admittance Input capacitance at gate1 Input capacitance at gate2 Output capacitance Reverse transfer capacitance SYMBOL IyFSI Cig1-ss Cig2-ss Coss Crss CONDITIONS MIN. TYP. MAX. UNIT
Tj=25 f=1MHz f=1MHz f=1MHz f=1MHz f=200MHz; Zi = S11 , Zo = S22
* *
25 30 27 24 90
30 1.7 3.3 0.9 15 33 30 27 1.2 1.5 -
40 2.2 25 2.0 -
mS fF
Power gain
Gtr
f=400MHz; Zi = S11*, Zo = S22* f=800MHz; Zi = S11*, Zo = S22* f=400MHz; Zi = S11 opt(NF)
Noise figure
NF
f=800MHz; Zi = S11 opt(NF) k=1%, fw=50MHz; funw=60MHz AGC = 0dB
Cross-modulation X
mod
k=1%, fw=50MHz; funw=60MHz AGC = 10dB k=1%, fw=50MHz; funw=60MHz AGC = 40dB
-
92
-
100
105
-
http://www.tachyonics.co.kr October. 2005.
Page 2 of 8
Rev. 1.0
Preliminary Specification
Equivalent circuit (Top view) 3 4 Making 3
TMF3202Z
4
2 tachyonics X1 1 3 4 2 2 3 4
2 tachyonics X2 1
DB1
2 1 1
1 Diode DIODE2
1 Diode DIODE1
2
Pin Configuration
PIN 1 2 3 DESCRIPTION SOURCE DRAIN GATE2 GATE1
Test circuit
V_DC VAGC 1 1 R RAGC R=10 kOhm 2 2 2 1
4
C CAGC C=4.7 nF 1 C CD C=4.7 nF 1 2 2 R RL R=50 Ohm 1 1 2 1 1 C CDB C=4.7 nF 1
C CIN C=4.7 nF 1 R RSOURCE R=50 Ohm 2 1 V_AC SRC1 1 2 1 2 1 R RIN R=50 Ohm R RGB R=68 kOhm tachyonics X2 1 V_DC VGB 1 2 1 Diode DIODE1 1 1 1 2 1 2 3 4 2 2 3 4
2 tachyonics X1 1
2 L LD L=2.2 uH
2 1
Diode DIODE2
2 1
V_DC VDB
Fig1. Test Cross-modulation test set-up
http://www.tachyonics.co.kr October. 2005.
Page 3 of 8
Rev. 1.0
Scattering parameters
Preliminary Specification
Graphs
TMF3202Z
ID [ m A ]
45 40 35 30 25 20 15 10 5 0 0.00 0.50 1.00 1.50 2.00
2V VG2=4V 3.5V 3V 2.5V
ID [ m A ]
30 25 20 15 10 V G1-S : 1.5V
1.4V 1.3V 1.2V 1.1V 1V 0.9V
1.5V
5
1V
0
2.50 VG1-S [V]
0
1
2
3
4
5
6 V DS [V ]
7
VDS =5V, Tj = 25 Fig.2 Transfer characteristics
300 IG 1 [ u A ]
VG2=4V 3.5V 3V
VG2-S = 4V, Tj = 25 Fig3. Output characteristics
| y fs| [m S ]
250
40 35 30 25
4V 3.5V 3V
200
2.5V
150
2V
20 15
2.5V
100
1.5V
10 5 0
50
1V
VG2-S = 2V
0 4 8 12 16 20 ID [mA]
0 0.00
0.50
1.00
1.50
2.00 VG1-S [V]
2.50
VDS =5V, Tj = 25 Fig.4 Gate1 Current as a function of gate1 Voltage
VDS =5V, Tj = 25 Fig5. Forward transfer admittance as a function of drain current
http://www.tachyonics.co.kr
October. 2005.
Page 4 of 8
Rev. 1.0
Preliminary Specification
TMF3202Z
Graphs
ID [ m A ]
ID [ m A ]
20
16 14 12 10 8
16
12
8
6 4 2
4
0 0 20 40 60 80 100 IG1 [uA]
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VGG [V]
VDS= 5V, V G2-S = 4V, Tj = 25 Fig6. Drain current as a function of gate1 current
VDS= 5V, V G2-S = 4V, RGB=62, Tj = 25 Fig7. Drain current as a function of gate1 supply voltage
18 16 14 12 10 8 6 4 2 0 0 1 2 3 4
RG1 = 33K 39K 51K
ID [ m A ]
ID [ m A ]
20
14 12 10
VGG = 5V 4.5V 4V 3.5V 3V
62K
75K 92K 100K
8 6 4 2 0
5 6 VGG=VDS [V]
0
1
2
3
4
5
6 VG2-S [V]
V G2-S = 4V, Tj = 25 , RGB= (Connected to VGG) Fig8. Drain current as a function of gate1 and drain supply voltage ; see Fig1
VDS= 5V, Tj = 25 , RGB=62 Fig9. Drain current as a function of gate2 voltage
http://www.tachyonics.co.kr October. 2005.
Page 5 of 8
Rev. 1.0
Preliminary Specification
Graphs
TMF3202Z
IG 1 [ u A ]
70 60 50 40 30 20 10 0 0.00
3.5V 3V VGG : 5V 4.5V 4V
0 G a in r e d u c t io n [ d B ]
-10
-20
-30
-40
-50
1.00
2.00
3.00
4.00
5.00
6.00 VG2-S [V]
0
1
2
3
4 VAGC [V]
VDS= 5V, RGB= 62, Tj = 25 ;Connected to VGB Fig10. Gate1 current as a function of gate2 voltage
f=50MHz, Pin=-30dBm, VDS= 5V, VGB= 5V, RGB=62 Tj = 25 Fig11. Typical Gain reduction as a function of AGC Voltage ; see Fig1
ID [ m A ]
14 12 10 8 6 4 2 0 0 10 20 30 40 50 gain reduction [dB]
f=50MHz, Pin=-30dBm, VDS= 5V, VGB= 5V, RGB=62 Fig12. Drain current as a function of gain reduction ; see Fig1
http://www.tachyonics.co.kr October. 2005.
Page 6 of 8
Rev. 1.0
Preliminary Specification
TMF3202Z
Graphs
Y iS [ m S]
| yrs | [ u S ]
100
10
rs
100 100 -100
bis
1
10
-10 10
|yrs|
gis
0 10 100 1000 f [MHz]
1 10 100
-1 1 1000
f [MHz]
VDS= 5V, V G2-S = 4V Fig13. Input admittance as a function of frequency
VDS= 5V, V G2-S = 4V Fig14. Reverse transfer admittance and phase as a function of frequency
| yfs | [ m S ]
|yfs|
fs [ d eg ]
100
-100 100
10.00
bos
1.00 Y o S [ m S]
10
-10 10
fs
0.10
gos
1 10 100
-1 1 1000
0.01 10 100 1000 f [MHz]
f [MHz]
VDS= 5V, V G2-S = 4V Fig15. Forward transfer admittance and phase as a function of frequency
VDS= 5V, V G2-S = 4V Fig16. Output admittance as a function of frequency
http://www.tachyonics.co.kr
Octorber. 2005.
Page 7 of 8
Rev. 1.0
rs [ d e g ]
1000
-1000 1000
Preliminary Specification
Scattering parameters
(VG2-S = 4V, VDS =5V, ID =12mA, Ta = 25 )
Input Reflection Coefficient
TMF3202Z
Reverse Transmission, dB 0
-20 dB(S(1,2))
freq (10.00MHz to 1.000GHz)
S(1,1)
-40
-60
-80 1E7
1E8 freq, Hz
Output Reflection Coefficient
1E9
Forward Transmission, dB 12 10 8 dB(S(2,1)) 6 4 2 0 1E7
S(2,2)
1E8 freq, Hz
1E9
freq (10.00MHz to 1.000GHz)
VDS=5V, VG2-S=4V, ID=12mA f (MHz) 50 100 200 300 400 500 600 700 800 S11 Magnitude (ratio)
0.897 0.915 0.952 0.938 0.912 0.836 0.863 0.830 0.800
S21 Angle (deg)
0.974 -5.323 -17.920 -27.300 -35.160 -43.000 -50.800 -57.600 -63.470
S12 Angle (deg)
171.7 165.5 153.1 141.5 130.8 120.1 110.1 98.8 87.8
S22 Angle (deg)
93.0 91.7 89 89.2 92.6 95.6 100.4 104.6 110.7
Magnitude (ratio)
3.93 3.81 3.58 3.40 3.20 3.04 2.89 2.75 2.62
Magnitude (ratio)
0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.004 0.004
Magnitude (ratio)
1.006 0.998 0.982 0.968 0.966 0.964 0.968 0.968 0.973
Angle (deg)
-1.86 -4.89 -10.97 -16.13 -20.8 -26.01 -30.59 -35.8 -40.87
http://www.tachyonics.co.kr Octorber. 2005.
Page 8 of 8
Rev. 1.0


▲Up To Search▲   

 
Price & Availability of TMF3202Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X